Sparse dynamical system identification with simultaneous structural parameters and initial condition estimation

نویسندگان

چکیده

Sparse Identification of Nonlinear Dynamics (SINDy) has been shown to successfully recover governing equations from data; however, this approach assumes the initial condition be exactly known in advance and is sensitive noise. In work we propose an integral SINDy (ISINDy) method simultaneously identify model structure parameters nonlinear ordinary differential (ODEs) noisy time-series observations. First, states are estimated via penalized spline smoothing then substituted into integral-form numerical discretization solver, leading a sparse pseudo linear regression. Then, sequential threshold least squares performed extract fewest active terms overdetermined set candidate features, thereby estimating structural meanwhile, making identified dynamics parsimonious interpretable. Simulations detail method’s recovery accuracy robustness Examples include logistic equation, Lotka–Volterra system, Lorenz system.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of noise parameters in dynamical system identification with Kalman filters.

A method is proposed for determining dynamical and observational noise parameters in state and parameter identification from time series using Kalman filters. The noise covariances are estimated in a secondary optimization by maximizing the predictive likelihood of the data. The approach is based on internal consistency; for the correct noise parameters, the uncertainty projected by the Kalman ...

متن کامل

Simultaneous identification of time-varying parameters and estimation of system states using iterative learning observers

This paper presents the design of an Iterative Learning Observer (ILO) for the purpose of estimating system states while simultaneously identifying timevarying parameters. The proposed ILO uses a novel updating mechanism to identify time-varying parameters instead of using integrators which are commonly used in classical adaptive observers to identify constant parameters while estimating system...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

stability and attraction domains of traffic equilibria in day-to-day dynamical system formulation

در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...

Identification of Search Models with Initial Condition Problems

This paper extends previous work on the identification of search models in which observed worker productivity is imperfectly observed. In particular, it establishes that these models remain identified even when employment histories are left-censored (i.e. we do not get to follow workers from their initial job out of unemployment), as well as when workers set different reservation wages from one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos Solitons & Fractals

سال: 2022

ISSN: ['1873-2887', '0960-0779']

DOI: https://doi.org/10.1016/j.chaos.2022.112866